УТВЕРЖДЕНА приказом НКО НКЦ (АО) от «04» апреля 2022 года № <u>04-04/405</u>

МЕТОДИКА РАСЧЕТА РИСКОВ НА РЫНКЕ СТАНДАРТИЗИРОВАННЫХ ПФИ

<u>ОГЛАВЛЕНИЕ</u>

1.	ОБЩИЕ ПОЛОЖЕНИЯ	2
2.	ОБЕСПЕЧЕННОСТЬ	2
	2.1. Оценка средств обеспечения	3
	2.2. РАСЧЕТ ТРЕБОВАНИЯ К ОБЕСПЕЧЕНИЮ	
	2.3. РАСЧЕТ ГАРАНТИЙНОГО ОБЕСПЕЧЕНИЯ.	3
И	3. РАСЧЕТНАЯ СТОИМОСТЬ ПОРТФЕЛЯ. РАСЧЕТНАЯ СТОИМОСТЬ НСТРУМЕНТОВ	. 11
	3.1. NPV (OIS) - оценка стоимости договоров процентный своп на ставку Overnight index swap	12
	3.2. NPV (IRS) - оценка процентных свопов	
	3.3. NPV (XCCY) – оценка Договора валютно – процентный своп	
	3.4. NPV (FX SWAPS, FX FORWARDS, FX FUTURES)	
	3.5. NPV (FX OPTION)	15
	3.6. Описание опционных стратегий	
	3.7. Вариационная маржа	18
	МОДЕЛЬ РИСК-ФАКТОРНЫХ КРИВЫХ	
	4.1. Рыночные данные	
	4.2. ПАРАМЕТРЫ МОДЕЛИ РИСК-ФАКТОРНЫХ КРИВЫХ	
	4.3. Калибровка модели	
	4.4. OIS кривые	
	4.5. СРОЧНЫЕ ПРОЦЕНТНЫЕ КРИВЫЕ	
	4.6. Дисконтные кривые	
	4.7. КРИВЫЕ ВОЛАТИЛЬНОСТИ	21
5.	РАСЧЕТ РИСК-ПАРАМЕТРОВ	. 21
	5.1. СТАТИЧЕСКИЕ РИСК – ПАРАМЕТРЫ	21
	5.2. Ставки валютного риска	
	5.3. Лимит колебаний стоимости Договора	
	5.4. Параметры Договоров, заключаемых с Недобросовестным Участником	23
6.	ПРИЛОЖЕНИЕ	. 24
	6.1. Коды Bloomberg котировок процентных деривативов, валютных опционов и фиксингов процентных ставок (список может быть дополнен по усмотрению НКЦ, при появлении	
	соответствующих инструментов)	
	6.2. СТАВКИ, ИСПОЛЬЗУЕМЫЕ ДЛЯ НАЧИСЛЕНИЯ ПРОЦЕНТОВ НА НАКОПЛЕННУЮ ДЕПОЗИТНУЮ МАРЖУ	
	6.3. Разложение по компонентам Гарантийного обеспечения	26

1. Общие положения

Настоящая Методика расчета рисков на рынке Стандартизированных ПФИ (далее – Методика) разработана в соответствии с правилами клиринга Клирингового центра, регулирующими порядок оказания клиринговых услуг на рынке Стандартизированных ПФИ (далее – Правила клиринга), и описывает порядок определения риск-параметров, используемых Клиринговым центром для контроля и управления рисками.

Методика раскрывается на сайте Клирингового центра в сети Интернет.

В Методике используются следующие термины и определения:

Валюта CSA – валюта, в которой осуществляются выплаты вариационной маржи по договорам СПФИ.

Вариационная маржа – термин, определяющий, в рамках Методики, вариационную маржу по биржевым финансовым инструментам и депозитную маржу по внебиржевым инструментам.

Договор – Договор СПФИ.

Клиринговый центр – Небанковская кредитная организация-центральный контрагент «Национальный Клиринговый Центр» (Акционерное общество).

Модель Vanna – Volga (VV) – метод, используемый для построения вмененной волатильности (согласно формуле Блэка – Шоулса) на основе котировок трёх имеющихся инструментов: ATM Straddle, Risk Reversal, Butterfly, при заданном сроке экспирации.

Модель shift-twist-butterfly – модель оценки требования к обеспечению, предполагающая рассмотрение трёх базовых сценариев сдвигов кривых процентных ставок.

Портфель – совокупность действующих Договоров СПФИ, заключенных определенным Участником клиринга.

Пул – параметр Договора, определяющий валюту CSA - уплаты Вариационной маржи в российских рублях, долларах США, евро или швейцарских франках.

Расчетная стоимость – стоимость Договора или Портфеля Договоров, определенная в соответствие со статьёй 3 настоящей Методики.

Торговый день – день, в который проводятся торги на рынке Стандартизированных ПФИ.

Термины, специально не определенные в Методике, используются в значениях, определенных Правилами клиринга, Спецификациями и нормативными актами Банка России.

Для целей допуска нерезидентов к клиринговому обслуживанию уровень международного рейтинга устанавливается на уровне странового рейтинга РФ, сниженного на 2 ступени.

2. Обеспеченность

Условием достаточности обеспечения является неотрицательность Уровня обеспеченности позиций Участника клиринга:

Уровень обеспеченности позиций = Оценка средств обеспечения — Требование к обеспечению ≥ 0, где Оценка средств обеспечения и Требование к обеспечению определяются в статьях 2.1 и 2.2 Методики соответственно.

2.1. Оценка средств обеспечения

Оценка средств обеспечения определяется следующим образом:

Оценка Средств Обеспечения =
$$\sum_{FX_j}$$
 Средства $_{FX_j} \times X_{FX_j/RUB} +$ Риск H еттинг,

Где Средства $_{FX_j}$ — Средства обеспечения Участника клиринга (Обеспечение и переданные профили активов) в валюте FX_j , учитываемые на соответствующих Расчётных кодах, РискНеттинг — компонента, связанная с неттированием валютного риска и обеспечения, определённая в пункте 2.3.1.4 Методики, $X_{FX_j/RUB}$ — валютные курсы, определённые в статье 3 Методики.

2.2. Расчет Требования к обеспечению

Размер Требования к обеспечению определяется следующим образом:

Требование к обеспечению = Гарантийное обеспечение — Текущая переоценка,

Где Гарантийное обеспечение – это часть Требования к обеспечению, соответствующая возможным издержкам Клирингового центра в результате проведения процедуры дефолт – менеджмента и прекращения допуска к клиринговому обслуживанию. Текущая переоценка – часть Требования к обеспечению, соответствующая переоценке расчетной стоимости Портфеля Участника клиринга: Текущая переоценка = $\sum_{FX_j} (NPV_{FX_j} - VM_{FX_j}) \times X_{FX_j/RUB}$, NPV_{FX_j} – сумма расчетных стоимостей Договоров из соответствующего пула FX_j , где FX_j – одна из валют списка: RUB, USD, EUR, CHF. Накопленная вариационная маржа VM_{FX_j} – величина, представляющая собой сумму уплаченной/полученной Вариационной маржи по указанным Договорам соответствующего пула FX_j . В случае наличия активной заявки Order Участника Клиринга, имеющей встречную активную заявку, Требование к обеспечению определяется следующим образом:

Требование к обеспечению = Требование к обеспечению (P + Order), где P - Портфель Участника клиринга.

В случае отсутствия встречной заявки Требование к обеспечению не изменяется.

2.3. Расчет Гарантийного обеспечения.

Гарантийное обеспечение для Портфеля (Initial Margin, *IM*) рассчитывается для покрытия вариационной маржи, которая может возникнуть в будущем, и для покрытия возможных издержек Клирингового центра при проведении процедуры дефолт – менеджмента.

Выделяются следующие компоненты *IM*:

- 1. Рыночный риск (MarketRisk)
 - а. Риск изменения процентных ставок (процентный риск)
 - i. Модель shift-twist-butterfly
 - іі. Поправка на ошибки модели shift-twist-butterfly
 - ііі. Поправка на ошибки модели процентных ставок
 - b. Риск изменения курсов валют (валютный риск)
 - с. Риск изменения волатильности
- 2. Риск ликвидности (LiquidityRisk)

Таким образом, Гарантийное обеспечение определяется как сумма компонент:

IM = IM[MarketRisk] + IM[LiquidityRisk]

2.3.1. Рыночный риск

2.3.1.1. Риск-факторы

Под риск – факторами понимаются величины, динамика которых определяет, в рамках модели, описанной в статье 4 Методики, изменение расчетной стоимости инструмента.

В рамках модели принимаются следующие риск - факторы:

- 1. Курсы иностранных валют к рублю $X_{FX_i/RUB}$:
 - а. Курс доллара $X_{USD/RUB}$
 - b. Курс евро $X_{EUR/RUB}$
 - с. Курс швейцарского франка $X_{CHF/RUB}$
- 2. Кривые процентных ставок (IR):
 - а. Кривая ставок OIS RUONIA
 - b. Кривая ставок Mosprime
 - с. Кривая ставок Rusfar 3m
 - d. Кривая ставок XCCY Adjusted
 - e. Кривая ставок Rusfar
 - f. Кривая ставок KeyRate
 - g. Кривая ставок USD LIBOR
 - h. Кривая ставок EURIBOR
 - і. Кривая ставок OIS SOFR
 - ј. Кривая ставок OIS ESTR
 - k. Кривая ставок OIS SARON
 - l. Кривая ставок CHFUSD FX
 - m. Кривая ставок EURUSD XCCY
- 3. Кривые временной структуры волатильности (FXVL):
 - а. Волатильности ATM Straddle
 - b. Волатильности RiskReversal
 - с. Волатильности Butterfly

Таким образом, пространство риск – факторов состоит из валютных курсов $X_{\frac{USD}{RUB}}$, $X_{\frac{EUR}{RUB}}$, $X_{\frac{CHF}{RUB}}$; кривых процентных ставок: $IR_i = (IR_i^j)$, i = RUONIA, Mosprime, $Rusfar\ 3m$, $XCCY_{Adjusted}$, Rusfar, KeyRate, $USD\ LIBOR$, SOFR,

 $EURIBOR,\ ESTR,SARON,CHFUSD_{FX},EURUSD_{XCCY};$ кривых волатильностей: $FXVL_i=(FXVL_i^j)$, i= ATM Straddle USD/RUB, Risk Reversal USD/RUB, Butterfly USD/RUB, индекс j пробегает «точки ликвидности» каждой кривой (массив значений ключевых сроков: O/N, 1W, 2W, 1M, 2M, 3M, 6M, 9M, 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y).

2.3.1.2. Дельта - маржирование. Компоненты рыночного риска

Изменение расчётной стоимости Портфеля NPV можно представить в следующем виде:

$$\Delta NPV \approx \sum_{i} \langle P.Delta[IR_i], \Delta IR_i \rangle + \sum_{i} \langle P.Delta[FXVL_i], \Delta FXVL_i \rangle + \sum_{i} \langle P.Delta[FX_i], \Delta FX_i \rangle$$

где $P.\,Delta[C_i]$ – векторы чувствительностей расчётной стоимости Портфеля к изменению на один базисный пункт соответствующей риск – факторной кривой или валютного курса ($C_i = IR_i, FXVL_i, FX_i$), ј – я компонента вектора $P.\,Delta[C_i]$ определяется в соответствии с формулой:

$$P.Delta[C_i]^j = NPV(C_i^j + 1bps) - NPV(C_i^j)$$

Рыночная компонента IM[MarketRisk] Гарантийного обеспечения представляется в виде:

IM[MarketRisk] = IM[MarketRisk][IR] + IM[MarketRisk][FXVL] + IM[MarketRisk][FX],

где слагаемые в правой части представляют собой процентный риск, риск волатильности и валютный риск соответственно.

2.3.1.3. Процентный риск и риск волатильности

Компоненты процентного риска IM[MarketRisk][IR] и риска волатильности IM[MarketRisk][FXVL] рассчитываются, исходя из shift – twist – butterfly модели движения риск – факторных кривых процентных ставок и кривых волатильности. Каждая компонента IM[MarketRisk][C] (C = IR, FXVL) представляется в виде:

$$IM[MarketRisk][C]$$

= $IM[MarketRisk][C][Model] + IM[MarketRisk][C][ModelError],$

Где IM[MarketRisk][C][Model] – модельная компонента, IM[MarketRisk][C][ModelError] — поправка, учитывающая ошибки модели (данное слагаемое учитывается в случае, если ошибки модели вносят значимый вклад в расчет Гарантийного обеспечения).

2.3.1.3.1. Модельная компонента

Компоненты *IM*[*MarketRisk*][C][*Model*] Гарантийного обеспечения рассчитываются на основе VaR – методологии для портфеля инструментов. При этом делаются следующие предположения:

• Эволюции риск – факторных кривых, используемых в рамках модели, независимы между собой.

• Изменения риск – факторных кривых описывается тремя главными компонентами: *shift*, *twist*, *butterfly*.

С учетом указанных предположений:

$$IM[MarketRisk][C][Model] =$$

$$= \sqrt{\sum_{i} \langle P. Delta[C_{i}], Shift_{i} \rangle^{2} + \langle P. Delta[C_{i}], Twist_{i} \rangle^{2} + \langle P. Delta[C_{i}], Butterfly_{i} \rangle^{2}}$$

где $Shift_i$, $Twist_i$, $Butterfly_i$ – задают сценарии изменения кривых вдоль главных компонент с заданной доверительной вероятностью:

$$Shift_i = f_i \sigma_{i shift} shift_i$$
,

 $Twist_i = f_i \sigma_{i twist} twist_i$,

 $Butterfly_i = f_i \sigma_{i \ butt} \ butterfly_i$,

В целях выделения отдельных аддитивных компонент IM[MarketRisk][C] рассчитываются следующие величины:

$$IM[MarketRisk][\mathsf{C}_i][Shift] = \langle P.Delta[\mathsf{C}_i], Shift_i \rangle^2 / IM[MarketRisk][Model][\mathsf{C}] \; ,$$

$$IM[MarketRisk][C_i][Twist] = \langle P.Delta[C_i], Twist_i \rangle^2 / IM[MarketRisk][Model][C],$$

$$\begin{split} &IM[MarketRisk][C_i][Butterfly]\\ &= \langle P.Delta[C_i], Butterfly_i \rangle^2 / IM[MarketRisk][Model][C], \end{split}$$

$$IM[MarketRisk][\texttt{C}][Model] = \sum_{i} \sum_{c \in \{Shift, Twist, Butterfly\}} IM[MarketRisk][\texttt{C}_i][c]$$

В применении к оценке процентного риска по кривым процентных ставок, перечисленным в разделе 2.3.1.1, вышеприведённая формула оценки *IM*[*MarketRisk*][C][*Model*] будет выглядеть следующим образом.

Совокупность процентных кривых:

$$\mathcal{A} = \left\{ \begin{aligned} \textit{XCCY}_{\textit{Adj}}, & \textit{Rusfar}, & \textit{RUONIA}, & \textit{Mosprime}, & \textit{Rusfar} \ \textit{3m}, & \textit{KeyRate}, \\ & \textit{USD Libor}, & \textit{EURIBOR},, & \textit{SOFR}, & \textit{ESTR}, & \textit{SARON}, \\ & & \textit{CHFUSD}_{\textit{FX}}, & \textit{EURUSD}_{\textit{XCCY}} \end{aligned} \right\}$$

Формула оценки модельного процентного риска:

$$IM[MarketRisk][IR][Model] = \sqrt{\frac{IR_{RUB}^2 + IR_{USD}^2 + IR_{EUR}^2 + IR_{CHF}^2 + 1}{\sum_{C_j \in \mathcal{A} \setminus \{RUONIA, SOFR, ESTR, SARON\}}}} IR_{C_j}^2$$

Компоненты сдвигов по кривой OIS RUONIA предполагают оценку чувствительности в сумме по всем рублевым кривым (т.е. рассматривается одновременный сдвиг всех рублевых кривых C_j в размере shift, twist, butterfly (fly) по RUONIA):

$$IR_{RUB} = \sum_{C_j \in \beta} \left| \frac{\overline{\partial NPV}}{\partial C_j} \right| Shift_{RUONIA} \right|^2 + \sum_{C_j \in \beta} \left| \frac{\overline{\partial NPV}}{\partial C_j} \right| Twist_{RUONIA} \right|^2 + \sum_{C_j \in \beta} \left| \frac{\overline{\partial NPV}}{\partial C_j} \right| Fly_{RUONIA} \right|^2$$

Совокупность рублевых кривых:

$$\beta = \{XCCY_{Adi}, Rusfar, RUONIA, KeyRate, Mosprime, Rusfar 3m, \}$$

Компоненты сдвигов по кривой OIS SOFR предполагают оценку чувствительности в сумме по всем долларовым кривым (т.е. рассматривается одновременный сдвиг всех долларовых кривых C_j в размере shift, twist, butterfly (fly) по SOFR):

$$\begin{split} \text{IR}_{USD} &= \sum_{C_j \in \{SOFR, USD\ Libor\}} \left| \frac{\overline{\partial \text{NPV}}}{\partial C_J} \right| \text{Shift}_{SOFR} \right|^2 + \sum_{C_j \in \{SOFR, USD\ Libor\}} \left| \frac{\overline{\partial \text{NPV}}}{\partial C_J} \right| \text{Twist}_{SOFR} \right|^2 \\ &+ \sum_{C_j \in \{SOFR, USD\ Libor\}} \left| \frac{\overline{\partial \text{NPV}}}{\partial C_J} \right| \text{Fly}_{SOFR} \right|^2 \end{split}$$

Компоненты сдвигов по кривой OIS ESTR предполагают оценку чувствительности в сумме по всем евровым кривым (т.е. рассматривается одновременный сдвиг всех евровых кривых C_j в размере shift, twist, butterfly (fly) по ESTR):

$$\begin{split} \text{IR}_{EUR} &= \sum_{\substack{C_j \in \{ESTR, EURIBOR, EURUSD_{XCCY}\}}} \left| \frac{\overline{\partial \text{NPV}}}{\partial C_j} \right| \text{Shift}_{ESTR} \right)^2 \\ &+ \sum_{\substack{C_j \in \{ESTR, EURIBOR, EURUSD_{XCCY}\}}} \left| \frac{\overline{\partial \text{NPV}}}{\partial C_j} \right| \text{Twist}_{ESTR} \right)^2 \\ &+ \sum_{\substack{C_j \in \{ESTR, EURIBOR, EURUSD_{XCCY}\}}} \left| \frac{\overline{\partial \text{NPV}}}{\partial C_j} \right| \text{Fly}_{ESTR} \right)^2 \end{split}$$

Компоненты сдвигов по кривой OIS SARON предполагают оценку чувствительности в сумме по всем франковым кривым (т.е. рассматривается одновременный сдвиг всех франковых кривых C_j в размере shift, twist, butterfly (fly) по SARON):

$$IR_{CHF} = \sum_{\substack{C_j \in \{SARON, \\ CHFUSD_{FX}\}}} \left| \frac{\overline{\partial NPV}}{\partial C_j} \right| Shift_{SARON} \right|^2 + \sum_{\substack{C_j \in \{SARON, \\ CHFUSD_{FX}\}}} \left| \frac{\overline{\partial NPV}}{\partial C_j} \right| Twist_{SARON} \right|^2 + \sum_{\substack{C_j \in \{SARON, \\ CHFUSD_{FX}\}}} \left| \frac{\overline{\partial NPV}}{\partial C_j} \right| Fly_{SARON} \right|^2$$

В компоненте IR_{C_j} (где $C_j \in \mathcal{A}\setminus \{RUONIA, SOFR, ESTR, SARON\}$) учтены сценарии Shift, Twist и Fly по кривым XCCY_Adj, Rusfar, Mosprime, KeyRate, Rusfar 3m, USD Libor, EURIBOR, EURUSD_XCCY, CHFUSD_FX которые задаются как возможное рассогласование с аналогичными сценариями по кривым RUONIA, SOFR, ESTR, SARON в соответствующей валюте:

$$IR_{C_{j}} = \sqrt{\left|\frac{\overline{\partial NPV}}{\partial C_{j}}\right| Shift_{C_{j}}}^{2} + \left|\frac{\overline{\partial NPV}}{\partial C_{j}}\right| Twist_{C_{j}}^{2} + \left|\frac{\overline{\partial NPV}}{\partial C_{j}}\right| Fly_{C_{j}}^{2}$$

2.3.1.3.2. Поправка на ошибки Метода главных компонент

При оценке IM[MarketRisk][C] применяются предположения о независимости риск – факторных кривых и об изменении кривых только за счет трех компонент shift – twist – butterfly. Поэтому существуют непустые Портфели, для которых $IM[MarketRisk][C_i] = 0$, а именно Портфели вида $P:\langle P.Delta[C_i], shift_i \rangle = \langle P.Delta[C_i], twist_i \rangle = \langle P.Delta[C_i], butterfly_i \rangle = 0$. Поправки на ошибки, связанные с указанными фактами задаются следующими величинами:

$$MinIM[C_i][ErrorSTB] = f_i \sigma_i^{ErrorSTBC} \sum_j |P.Delta[C_i]^j|$$

Риск – параметры $\sigma_i^{ErrorSTBC}$ определяются, исходя из доли необъясненной дисперсии при выделении главных компонент $shift_i$, $twist_i$, $butterfly_i$, и возможной корреляцией между кривыми. Компонента Гарантийного обеспечения $IM[MarketRisk][C_i][ErrorSTB]$ определяется как $(x^+ = x, ecnu \ x \ge 0, \ x^+ = 0, ecnu \ x < 0)$:

$$IM[MarketRisk][C_i][ErrorSTB] = \\ = (MinIM[C_i][ErrorSTB] - \sum_{c \in \{shift, twist, butterfly\}} IM[MarketRisk][C_i][c])^+$$

2.3.1.3.3. Поправка на ошибки модели процентных ставок

Модель построения риск – факторных кривых опирается на рыночные данные в точках ликвидности (1W, 2W, 1M, ..., 10Y). Значения кривых в промежуточных

точках, интерполируются с использованием этих данных, поэтому их оценки, а значит и цены, и риски соответствующих инструментов, могут отличаться от их «расчетной» оценки.

С точки зрения Портфелей, данный факт приводит, например, к существованию непустых Портфелей, для которых $P.\,Delta[C_i]^j=0$, и, соответственно, нулевым компонентам рыночного риска, описанным выше.

Определим величины, которые учитывают возможную выпуклость кривых на интервалах между точками ликвидности:

$$MinIM[C_i][ModelErrorC] = f_i \sigma_i^{ErrorModelC} \sum_t \sum_{Deal(t) \in P} \sum_j \left| Deal(t).Delta[C_i]^j \right|.$$

где $\sum_{Deal(t) \in P}$ означает суммирование по всем сделкам из портфеля P с датой окончания срока действия договора t, риск – параметр $\sigma_i^{ErrorModelC}$ – представляет собой оценку волатильности –компоненты изменения кривых на локальных интервалах между точками ликвидности.

Компоненты Гарантийного обеспечения $IM[MarketRisk][C_i][ErrorC]$ определяется как:

$$IM[MarketRisk][C_i][ErrorC] =$$

$$= (MinIM[C_i][ErrorC] - \sum_{c \in \{shift, twist, butterfly, ErrorSTB\}} IM[MarketRisk][C_i][c])^+$$

2.3.1.3.4. Суммарные компоненты процентного риска и риска волатильности

Обобщая все компоненты процентного риска и риска волатильности, окончательно получаем:

$$IM[MarketRisk][IR] = \sum_{i} \sum_{c \in \{Shift,Twist,Butterfly,ErrorSTB,ErrorIR\}} IM[MarketRisk][IR_i][c]$$

$$IM[MarketRisk][FXVL] \\ = \sum_{i} \sum_{c \in \{Shift,Twist,Butterfly,ErrorSTB,ErrorFXVL\}} IM[MarketRisk][FXVL_i][c]$$

2.3.1.4. Валютный риск

Значение IM[MarketRisk][FX] определяется следующим образом:

$$IM[MarketRisk][FX] = \sum_{FX_j} IM[MarketRisk][FX_j]$$

$$IM[MarketRisk][FX_j] = -\min_{-FX_jRate \leq \delta \leq FX_jRate} \left(\text{NPV}(X_{FX_j/RUB}(1+\delta)) - \text{NPV}(X_{FX_j/RUB}) \right)$$

 $IM[MarketRisk][FX_j]$ – минимальное значение изменения стоимости Портфеля на множестве сценариев изменения курса валюты FX_j к рублю при неизменности остальных риск-факторов: $X_{FX_j/RUB} \to X_{FX_j/RUB}(1+\delta)$, где δ — параметризует сценарии движения соответствующего валютного курса и изменяется в пределах отрезка от $-FX_jRate$ до $+FX_jRate$, где FX_jRate — ставка риска по валюте FX_j .

$$P$$
иск H еттинг = $IM[MarketRisk][FX] +$

$$+\sum_{FX_{j}} \min_{-FX_{j}Rate \leq \delta \leq FX_{j}Rate} (\text{NPV}(X_{FX_{j}/RUB}(1+\delta)) - \text{NPV}(X_{FX_{j}/RUB}) + \delta imes X_{FX_{j}/RUB} imes \text{Средства}_{FX_{j}})$$

2.3.2. Риск ликвидности

Данная компонента Гарантийного обеспечения предназначена для покрытия возможных издержек, связанных с риском рыночной ликвидности.

Рыночная компонента Гарантийного обеспечения определяется из предположения о совершенной ликвидности финансовых инструментов: процедуры урегулирования неисполнения обязательств (дефолта) можно реализовать в течение одного торгового дня, после принятия соответствующего решения.

Вводится компонента IM[Liquidity], учитывающая потенциальное увеличение срока осуществления процедуры урегулирования неисполнения обязательств, в силу ограниченной ликвидности Договоров (C = IR, FXVL):

$$IM[Liquidity] = \\ = \sum_{j} l_{FX_{j}} IM[MarketRisk][FX_{j}] + \sum_{j,c} l_{j,c} IM[MarketRisk][C_{j}][c] \\ l_{FX_{j}} = (\sqrt{Time_{FX_{j}}} + AddTime_{FX_{j}} - \sqrt{Time_{FX_{j}}}) / \sqrt{Time_{FX_{j}}} \\ l_{C,j,c} = (\sqrt{Time_{C} + AddTime_{C,j,c}} - \sqrt{Time_{C}}) / \sqrt{Time_{C}} \\ AddTime_{FX_{j}} = \left(\frac{|P.Delta[FX_{j}]|}{L_{FX_{j}}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j} \\ AddTime_{C,j,c} = \left(\frac{|\langle P.Delta[C_{j}], c \rangle|}{L_{C,j,c}} - 1\right)^{+}, c = Shift_{j}, Twist_{j}, Fly_{j}$$

где $Time_{FX_j}$, $Time_{IR}$ и $Time_{FXVL}$ – горизонты оценки рисков для соответствующих риск – факторов, а риск – параметры L_{FX_j} , $L_{IR,j,c}$, $L_{FXVL,j,c}$ определяют максимальные абсолютные величины коэффициентов чувствительности $P.\ Delta$, которые можно «захеджировать» сделками в течение одного торгового дня без существенного влияния на стоимость Договоров.

Поскольку сдвиги главных компонент shift, twist, fly по RUONIA, SOFR, ESTR, SARON рассматривались в модели оценки процентного риска одновременно по всем процентным кривым, сгруппированным по валютам, то величины $AddTime_{IR,OIS,c}$, $AddTime_{IR,SOFR,c}$, $AddTime_{IR,SOFR,c}$, $AddTime_{IR,SARON,c}$ также рассматривают чувствительности в сумме по всем сгруппированным по валютам кривым:

$$AddTime_{IR,RUONIA,c} = \left(\frac{\left|\sum_{C_{j} \in \mathcal{A}} \left| \frac{\overline{\partial NPV}}{\partial C_{j}} \right| c\right|}{L_{IR,RUONIA,c}} - 1\right)^{+}$$

 $c = Shift_{RUONIA}, Twist_{RUONIA}, Fly_{RUONIA}$

 $A = \{XCCY_{Adj}, Rusfar, RUONIA, KeyRate, Mosprime, Rusfar 3m, KeyRate\}$

$$AddTime_{IR,SOFR,c} = \left(\frac{\left|\sum_{C_j \in (SOFR,USD_Libor)} \left(\frac{\overline{\partial NPV}}{\overline{\partial C_j}} \middle| c\right)\right|}{L_{IR,SOFR,c}} - 1\right)^{+}$$

$$c = Shift_{SOFR}, Twist_{SOFR}, Fly_{SOFR}$$

$$AddTime_{IR,ESTR,c} = \left(\frac{\left|\sum_{C_j \in (ESTR,EURIBOR,EURUSD_{XCCY})} \left(\frac{\overline{\partial NPV}}{\partial C_j} \middle| c\right)\right|}{L_{IR,ESTR,c}} - 1\right)^{+}$$

$$c = Shift_{ESTR}, Twist_{ESTR}, Fly_{ESTR}$$

$$AddTime_{IR,SARON,c} = \left(\frac{\left|\sum_{C_j \in (SARON,CHFUSD_{FX})} \left(\frac{\overline{\partial NPV}}{\overline{\partial C_j}} \middle| c\right)\right|}{L_{IR,SARON,c}} - 1\right)^+$$

$$c = Shift_{SARON}, Twist_{SARON}, Fly_{SARON}$$

3. Расчетная стоимость Портфеля. Расчетная стоимость инструментов.

Общий подход к определению расчётной стоимости Портфеля основывается на определении суммы чистых стоимостей приведённых потоков платежей, дисконтированных по кривой соответствующего валютного пула FX_i :

$$NPV_{FX_i}(Portfolio) = \sum_{FX_j} \sum_{FX_j \ cash \ flows} DF_{FX_j}(t)CF_{FX_j}(t)X_{FX_j/FX_i}$$

Где $DF_{FX_j}(t)$ — фактор дисконтирования платежей в валюте FX_j для соответствующей валюты CSA по Договору, $CF_{FX_j}(t)$ — сумма платежей в валюте FX_j , положительная величина $CF_{FX_j}(t)$ соответствует обязательствам Клирингового центра, отрицательная — обязательствам Участника клиринга. Плавающие потоки в процентных и валютно — процентных свопах определяются, исходя из соответствующих форвардных кривых, калибруемых на рыночных данных, условные потоки по валютным опционам определяются, исходя из модели Vanna — Volga. X_{FX_j/FX_i} — курс валюты FX_j к валюте FX_i . Валюты FX_i , FX_j пробегают множество USD, EUR, CHF, RUB. Курсы X_{FX_j/FX_i} в целях расчёта NPV рассчитываются следующим образом: в качестве курсов $X_{USD/RUB}$, $X_{EUR/RUB}$ — принимаются актуальные значения фиксингов курсов соответствующих валютных пар, рассчитываемые согласно Методике расчёта фиксингов Московской Биржи; курс $X_{CHF/RUB}$ определяется как центральный курс по паре CHF/RUB на Валютном рынке согласно Методике определения НКО НКЦ (AO) риск-параметров валютного рынка и рынка драгоценных металлов ПАО Московская Биржа.

Курсы в целях определения оценки обеспечения определяются как центральные курсы: оценка обеспечения в день Т0 до проведения клиринговой сессии mark-to-market производится по центральному курсу, определенному в день Т-1; во время клиринговой сессии mark-to-market дня Т0 для переоценки обеспечения используются новые центральные курсы.

Курс $X_{FX1/FX2}$ — рассчитывается как кросс — курс: $X_{FX1/FX2} = X_{FX1/RUB}/X_{FX2/RUB}$; обратные курсы рассчитываются согласно формулам: $X_{FX_j/FX_i} = 1/X_{FX_i/FX_j}$, курсы X_{FX_j/FX_j} принимаются равными единице; если не оговорено иное, указанные курсы используются в качестве курсов валютных пар в целях, предусмотренных Правилами клиринга.

Ниже приводятся формулы расчёта NPV для частных случаев: процентных свопов OIS, IRS, XCCY и опционов на USDRUB.

3.1. NPV (OIS) – оценка стоимости договоров процентный своп на ставку Overnight index swap

Расчетная стоимость Договора процентный своп, которому в соответствии со спецификацией присвоен код OIS, определяется следующим образом:

$$\begin{split} NPV_{FX1}(OIS) &= Notional \left(\sum_{floating} DF_{FX1}(t_j) \beta_j Compounded Rate(t_j) \right. \\ &- \left. \sum_{fixed} DF_{FX1}(t_i) \alpha_i \ c_{fixed} \right) + DF_{FX1}(t_{pr}) premium_{FX1} \end{split}$$

$$\begin{split} NPV_{FX2}(OIS) &= Notional \left(\sum_{floating} DF_{FX2}(t_j)Y(t_j)\beta_j Compounded Rate(t_j) \right. \\ &- \left. \sum_{fixed} DF_{FX2}(t_i)Y(t_i)\alpha_i \; c_{fixed} \right) + DF_{FX2}(t_{pr})premium_{FX2} \end{split}$$

где α_i, β_j - соответствующие Коэффициенты для расчета дней в процентном периоде,

CompoundedRate(t) – ожидаемая за указанный Процентный период накопленная ставка, рассчитанная по форвардной овернайт кривой,

 c_{fixed} – Фиксированная ставка по Договору.

В расчет расчетной стоимости Договора включаются еще не совершенные купонные платежи и не выплаченный Дополнительный платеж.

$$X(t)$$
 – форвардный курс FX2/FX1, $Y(t) = 1/X(t)$,

Величины $premium_{FX1}$ и $premium_{FX2}$ связаны курсом $X(t_{pr})$.

3.2. NPV (IRS) - оценка процентных свопов

Расчетная стоимость Договора процентный своп, которому в соответствии со спецификацией присвоен код IRS, определяется следующим образом:

$$\begin{split} NPV_{FX1}(IRS) &= Notional \left(\sum_{floating} DF_{FX1}(t_j) \beta_j FwdCurve(t_j) \right. \\ &- \left. \sum_{fixed} DF_{FX1}(t_i) \alpha_i \, c_{fixed} \right) + DF_{FX1}(t_{pr}) premium_{FX1} \\ NPV_{FX2}(IRS) &= Notional \left(\sum_{floating} DF_{FX2}(t_j) Y(t_j) \beta_j FwdCurve(t_j) \right. \\ &- \left. \sum_{fixed} DF_{FX2}(t_i) Y(t_i) \alpha_i \, c_{fixed} \right) + DF_{FX2}(t_{pr}) premium_{FX2} \end{split}$$

где α_i, β_j - соответствующие Коэффициенты для расчета дней в процентном периоде,

FwdCurve(t) – ставка форвардной кривой (определена согласно подразделу 4.5. Методики) за указанный Процентный период,

$$X(t)$$
 – форвардный курс FX2/FX1, $Y(t) = 1/X(t)$,

 c_{fixed} – Фиксированная ставка по Договору.

В расчет расчетной стоимости Договора включаются еще не совершенные купонные платежи и не выплаченный Дополнительный платеж.

Величины $premium_{FX1}$ и $premium_{FX2}$ связаны курсом $X(t_{vr})$.

3.3. NPV (XCCY) - оценка Договора валютно - процентный своп

Расчетная стоимость Договора валютно – процентный своп имеет следующий вид:

$$\begin{split} NPV_{FX1}(XCCY) &= Notional_{FX2} \sum_{floating/fixed} DF_{FX1}(t_j)X(t_j)\beta_j FwdCurve(t_j) \\ &+ Notional_{FX2}X(T)DF_{FX1}(T) - Notional_{FX1} \sum_{fixed/floating} DF_{FX1}(t_i)\alpha_i \, c_{fixed} \\ &- Notional_{FX1}DF_{FX1}(T) + DF_{FX1}(t_{pr})premium_{FX1} \end{split}$$

$$NPV_{FX2}(XCCY) \\ &= Notional_{FX2} \sum_{floating/fixed} DF_{FX2}(t_j)\beta_j FwdCurve(t_j) + Notional_{FX2}DF_{FX2}(T) \\ &- Notional_{FX1} \sum_{fixed/floating} DF_{FX2}(t_i)Y(t_j)\alpha_i \, c_{fixed} \\ &- Notional_{FX1}DF_{FX2}(T)Y(t_j) + DF_{FX2}(t_{pr})premium_{FX2} \end{split}$$

Если обязанность одной стороны Договора передать валюту в собственность второй стороне в размере Номинальной суммы, установленной для второй стороны, и обязанность второй стороны уплатить первой стороне Номинальную сумму, установленную для первой стороны, еще не исполнены, к указанному выражению добавляется

$$\begin{split} NPV_{FX1}(FrontNotionalPayment) \\ &= -Notional_{FX2}X(T_0)DF_{FX1}(T_0) + Notional_{FX1}DF_{FX1}(T_0) \\ NPV_{FX2}(FrontNotionalPayment) \\ &= -Notional_{FX2}DF_{FX2}(T_0) + Notional_{FX1}DF_{FX2}(T_0)Y(T_0) \end{split}$$

где α_i, β_j - соответствующие Коэффициенты для расчета дней в процентном периоде,

FwdCurve(t) – ставка форвардной кривой для указанного Процентного периода,

 c_{fixed} – фиксированная ставка по Договору.

X(t) – форвардный курс FX2/FX1, Y(t)=1/X(t), T – дата окончания действия Договора, T_0 – дата начала действия Договора. В сумме учитываются еще не совершенные купонные платежи и не выплаченный Дополнительный платеж. Величины $premium_{FX1}$ и $premium_{FX2}$ связаны курсом $X(t_{pr})$.

3.4. NPV (FX Swaps, FX forwards, FX futures)

Расчетная стоимость Договоров валютный своп, форвард и фьючерс определяется следующим образом:

$$\begin{split} NPV_{FX1}(FX\,Swap) &= Notional \times \left(SwapForwardRate - X(T)\right) \times DF_{FX1}(T) \\ &+ DF_{FX1}(t_{pr})premium_{FX1} \\ NPV_{FX2}(FX\,Swap) &= Notional \times \left(SwapForwardRate \times Y(T) - 1\right) \times DF_{FX2}(T) \\ &+ DF_{FX2}(t_{pr})premium_{FX2} \end{split}$$

Если обязанность одной стороны Договора валютный своп передать валюту в собственность второй стороне в размере Номинальной суммы, установленной для второй стороны, и обязанность второй стороны уплатить первой стороне Номинальную сумму, установленную для первой стороны, еще не исполнены, к указанным выражениям добавляется

$$NPV_{FX1}(FrontPayment) = -Notional imes (SwapSpotRate - X(T_0)) imes DF_{FX1}(T_0)$$
 $NPV_{FX2}(FrontPayment) = -Notional imes (SwapSpotRate imes Y(T_0) - 1) imes DF_{FX2}(T_0)$ где $X(t)$ - форвардный курс FX2/FX1, $Y(t) = 1/X(t)$, T - дата окончания действия Договора, T_0 - дата начала действия Договора,

SwapForwardRate - форвардный курс в свопе/форварде/фьючерсе,

SwapSpotRate - базовый курс Договора.

В расчет расчетной стоимости Договора включаются еще не совершенные купонные платежи и не выплаченный Дополнительный платеж. Величины $premium_{FX1}$ и $premium_{FX2}$ связаны курсом $X(t_{pr})$.

3.5. NPV (FX option)

Нахождение расчётной стоимости FX опционов использует модель Vanna – Volga. Для покупателя опциона значение:

$$NPV_{FX_i}(Vanilla) = OptionValue_{FX_i} - NPV_{FX_i}(Premium),$$

где $OptionValue_{FX_i}$ – расчётная цена опциона, то есть цена, вычисленная в соответствии с моделью Vanna – Volga, а $NPV_{FX_i}(Premium)$ - чистая приведённая стоимость в валюте премии по опциону, для продавца опциона значение $NPV_{FX_i}(Vanilla)$ отличается знаком. Расчётная стоимость опционной стратегии определяется как сумма расчётных цен Договоров Vanilla, входящих в Портфель.

Модель Vanna – Volga (VV) – метод, используемый для построения вмененной волатильности (согласно формуле Блэка – Шоулса) на основе котировок трёх

имеющихся инструментов: ATM Straddle, Risk Reversal, Butterfly, при заданном сроке экспирации (страйк инструмента ATM Straddle определяется, исходя из условия равенства форвардной дельты 50%, составляющая инструменты Risk Reversal и Butterfly Vanilla выбирается с форвардной дельтой 25%). Метод построении локально реплицирующих базируется объединённые стоимости хеджирования добавляются к соответствующим ценам в модели Блэка-Шоулса (BS) (то есть выступают в роли поправки к BS – цене) для получения значений, согласующихся с ценами торгующихся на рынке опционов. В BS – модели выплата по европейскому FX опциону колл является функцией $C^{BS} =$ $C^{BS}(t,K,S_t,DF_{RUB},DF_{USD},T,\sigma)$, где t – момент определения цены, K – страйк оцениваемого опциона, S_t = $X_{FX_i/RUB}$, обменный курс в момент времени t, DF_{RUB} рублёвый фактор (cross currency-adjusted), DF_{USD} дисконтирующий дисконтирующий долларовый фактор, T – момент экспирации, σ – торгуемая на рынке волатильность. В модели VV цена опциона задаётся формулой:

$$C_{VV} = C_{BS} + x_p(K) (C_{MKT}(K_p) - C_{BS}(K_p)) + x_o(K) (C_{MKT}(K_o) - C_{BS}(K_o)) + x_c(K) (C_{MKT}(K_c) - C_{BS}(K_c)),$$

где $C_{MKT}(K_i)$ – котируемые на рынке цены опционов для соответствующих страйков, однозначно восстанавливаемые по котировкам инструментов ATM Straddle, Risk Reversal, Butterfly, $C_{BS}(K_i)$ – цены опционов для соответствующих страйков в BS – модели, $x_i(K)$ – соответствующие веса, i=p,o,c –параметр, определяющий принадлежность индексируемого числа к соответствующим страйкам.

$$x_p(K) = \frac{v(K)}{v(K_p)} \frac{\ln \frac{K_o}{K} \ln \frac{K_c}{K}}{\ln \frac{K_o}{K_p} \ln \frac{K_c}{K_p}}$$

$$x_o(K) = \frac{v(K)}{v(K_o)} \frac{\ln \frac{K}{K_p} \ln \frac{K_c}{K}}{\ln \frac{K_o}{K_p} \ln \frac{K_c}{K_o}}$$

$$x_c(K) = \frac{v(K)}{v(K_c)} \frac{\ln \frac{K}{K_p} \ln \frac{K}{K_o}}{\ln \frac{K_c}{K_p} \ln \frac{K_c}{K_o}}$$

где $\nu(K), \nu(K_i)$ – значения веги соответствующих опционов ($Vega(K) = \nu(K) = \frac{\partial C_{BS}}{\partial \sigma}$).

3.6. Описание опционных стратегий

3.6.1. Straddle

Стратегия представляет собой позицию по двум опционам Call и Put, той же направленности, что и заявка. Валюта вариационной маржи предполагается одинаковой для двух опционов и определяется в заявке. Номинал этих двух опционов определяется как номинал, указанный в заявке:

Здесь и далее такое обозначение означает, что указанная стратегия состоит из соответствующих опционов. При этом, знак «+» означает, что опцион имеет ту же направленность, что и стратегия. Купить Straddle эквивалентно покупке одного опциона колл и покупке одного опциона пут с указанными параметрами.

3.6.2. Risk Reversal

3.6.3. Butterfly

$$BF = Call \left(FX \ Pair, Expiry, \frac{Notional}{2}, ATM \ Call \ Strike \right) \\ + Put \left(FX \ Pair, Expiry, \frac{Notional}{2}, ATM \ Put \ Strike \right) - \\ - Call \left(FX \ Pair, Expiry, \frac{Notional}{2}, BF \ Call \ Strike \right) \\ - Put \left(FX \ Pair, Expiry, \frac{Notional}{2}, BF \ Put \ Strike \right)$$

3.6.4. Распределение премий по опционам

Распределение премий по опционам для общего случая

$$Strategy = \sum_{j=1}^{N} Vanilla_{j}, \quad Vanilla_{j} = Call/Put$$

Таким образом, премия по всей стратегии равна сумме премий по опционам, входящим в стратегию. Пусть Vanilla_j. TV – теоретические премии по атомарным опционам Call и Put, тогда теоретическая стоимость стратегии:

Stategy.
$$TP = \sum_{j} Vanilla_{j}$$
. TP

Премия стратегии Strategy. P, указанная в заявке, распределяется между атомарными опционами следующим образом:

Vanilla_j. P = Vanilla_j. TP + $\frac{\alpha}{N}$ (Strategy. P – Stategy. TP), где α =1, если позиция по соответствующему опциону Vanilla_j «длинная» (входит в стратегию со знаком «плюс»), и α = - 1, если позиция по соответствующему опциону Vanilla_j «короткая» (входит в стратегию со знаком «минус»).

3.7. Вариационная маржа

Вариационная маржа по Договору определяется согласно Спецификациям договоров. Расчетной стоимостью по Договору из Пула FX_i является: $NPV_{FX_i}(t)$.

Вариационная Маржа $_{FX_i}(t) = NPV_{FX_i}(t) - NPV_{FX_i}(t-1)$, причем если день t является днем совершения сделки, величина $NPV_{FX_i}(t-1)$ полагается равной нулю.

При этом, для Договора, обязательства и требования, по которому исполнены (неисполненные Участником обязательства в данном случае не включаются в структуру сделки), *NPV* полагается равным нулю.

4. Модель риск-факторных кривых

4.1. Рыночные данные

В качестве входных параметров модели принимаются следующие наборы рыночных данных:

- 1. Валютные курсы:
 - a. USDRUB
 - b. EURRUB
 - c. CHFRUB
- 2. Процентные ставки:
 - a. RUONIA:
 - i. RUONIA
 - ii. RUONIA OIS: 1W, ..., 2Y
 - b. Mosprime:
 - i. Fixing Mosprime1M, Mosprime3M, Mosprime6M,
 - ii. FRA Mosprime3M: 3M×6M, 6M×9M
 - iii. IRS Mosprime3M: 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y
 - c. FX curve:
 - i. FX Swaps: 1W, ..., 9M
 - ii. USDRUB XCCY: 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y
 - d. Rusfar:
 - i. Rusfar ON, Rusfar 3M, Rusfar 1W, ..., 1Y
 - e. KeyRate:
 - i. IRS KeyRate: RUB Swap vs Key Rate 3M, 6M, 9M, 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y

USD Libor:

- ii. Fixing USD Libor1M, USD Libor3M, USD Libor6M
- iii. FRA USD Libor3M: 3M×6M, 6M×9M
- iv. IRS USD Libor3M: 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y
- f. Euribor:
 - i. Fixing Euribor1M, Euribor3M, Euribor6M
 - ii. FRA Euribor3M: 3M×6M, 6M×9M
 - iii. IRS Euribor3M: 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y
- g. SOFR:
 - i. SOFR

- ii. SOFR OIS: 1W, ..., 10Y
- h. ESTR:
 - i. ESTR
 - ii. ESTR OIS: 1W, ..., 10Y
- i. SARON:
 - i. SARON
 - ii. SARON OIS: 1W, ..., 10Y
- j. EURUSD XCCY:
 - i. FX Swaps: 1W, ..., 9M
 - ii. EURUSD XCCY: 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y
- k. CHFUSD FX:
 - i. FX Swaps: 1W, ..., 10Y
- 3. Поверхность волатильности:
 - a. ATM Straddl: 1W, ..., 2Y
 - b. Risk Reversal: 1W, ..., 2Y
 - c. Butterfly: 1W, ..., 2Y

В Приложении к Методике приведены коды Bloomberg, используемые для выгрузки котировок по указанным инструментам.

По решению Клирингового центра для получения котировок по указанным инструментам могут быть использованы источники, отличные от Bloomberg.

4.2. Параметры модели риск-факторных кривых

Модель представляет собой совокупность параметров и алгоритмов оценки расчетной стоимости производных инструментов. В качестве пространства параметров Методикой устанавливается нижеследующий набор факторов:

- 1. Валютные курсы
 - a. USDRUB
 - b. EURRUB
 - c. CHFRUB
- 2. Долларовые кривые
 - а. Дисконтная кривая для валюты CSA USD
 - b. Дисконтная кривая для валюты CSA RUB
 - с. Дисконтная кривая для валюты CSA EUR
 - d. Дисконтная кривая для валюты CSA CHF
 - e. Спот кривая процентных ставок USD Libor
 - f. Овернайт кривая SOFR
- 3. Кривые для евро
 - а. Дисконтная кривая для валюты CSA USD
 - b. Дисконтная кривая для валюты CSA RUB
 - с. Дисконтная кривая для валюты CSA EUR
 - d. Дисконтная кривая для валюты CSA CHF
 - e. Спот кривая процентных ставок Euribor
 - f. Овернайт кривая ESTR
- 4. Кривые для швейцарского франка
 - а. Дисконтная кривая для валюты CSA USD
 - b. Дисконтная кривая для валюты CSA RUB
 - с. Дисконтная кривая для валюты CSA EUR
 - d. Дисконтная кривая для валюты CSA CHF

- e. Овернайт кривая SARON
- 5. Рублевые кривые
 - а. Дисконтная кривая для валюты CSA USD
 - b. Дисконтная кривая для валюты CSA RUB
 - с. Дисконтная кривая для валюты CSA EUR
 - d. Дисконтная кривая для валюты CSA CHF
 - e. Овернайт кривая RUONIA
 - f. Кривая процентных ставок Mosprime
 - g. Овернайт кривая Rusfar
 - h. Кривая процентных ставок KeyRate
 - i. Кривая процентных ставок Rusfar 3m
- 6. Кривые временной структуры волатильности
 - а. Кривая ATM Straddle
 - b. Кривая Risk Reversal
 - с. Кривая Butterfly

4.3. Калибровка модели

Общий подход калибровки модели заключается в определении таких значений риск – факторов, при которых расчетные стоимости инструментов, по которым калибруется модель, соответствовали рыночным ценам.

4.4. OIS кривые

За OIS кривые SOFR, ESTR, SARON, RUONIA, RUSFAR принимаются кривые, оценивающие как нулевую дисконтированную стоимость всех денежных потоков каждого инструмента, состоящего из индексных свопов OIS с базовыми активами SOFR, ESTR, SARON, RUONIA, RUSFAR (в случае наличия таких данных, и, с использованием данных по базовому активу RUONIA, при отсутствии таких данных) соответственно.

4.5. Срочные процентные кривые

За спот – кривые по иностранным валютам (доллар США – USD Libor, евро - EURIBOR) принимаются кривые, оценивающие как нулевую дисконтированную стоимость всех инструментов набора FRA3M \times 6M, FRA6M \times 9M, IRS1Y, IRS2Y, IRS3Y, IRS4Y, IRS5Y, IRS6Y, IRS7Y, IRS9Y, IRS9Y, IRS10Y.

MosPrime кривая: Mosprime кривая строится аналогично валютным кривым по набору инструментов с базовым активом Mosprime3M.

Rusfar 3m кривая: Rusfar 3m кривая строится аналогично валютным кривым по набору инструментов с базовым активом Mosprime3M. В качестве котировок таких инструментов используются котировки инструментов с базовым активом Mosprime 3M, скорректированные на величину спреда между наблюдаемыми фиксингами Mosprime 3m и Rusfar 3m.

KeyRate кривая: KeyRate кривая калибруется как кривая, дисконтирование потоков по которой делает стоимость свопа на Ключевую ставку Банка России равной нулю, с учётом того факта, что плавающие потоки рассчитываются как вменённые по этой кривой, а фиксированные – на основании соответствующих рыночных данных.

4.6. Дисконтные кривые

Дисконтные кривые для валют в случае, если валюта CSA совпадает с валютой кривой (далее – Базовые дисконтные кривые), строятся из соответствующих OIS кривых: долларовая дисконтная кривая для валюты CSA USD строится из кривой SOFR, дисконтная кривая в евро для валюты CSA EUR строится из кривой ESTR, дисконтная кривая для швейцарского франка для валюты CSA CHF строится из кривой SARON, рублевая дисконтная кривая для валюты CSA RUB строится из кривой RUONIA.

Дисконтные кривые с учетом CSA (валюта CSA отличается от валюты кривой) – калибруются путем приравнивания расчетной стоимости калибровочных инструментов к наблюдаемым рыночным котировкам.

Калибровочные инструменты:

- 1. Валютные свопы USDRUB и валютно-процентные свопы (Libor3M vs Fix) используются для получения дисконтных кривых для валюты RUB и валюты CSA USD, для валюты RUB и валюты CSA EUR, для валюты RUB и валюты CSA CHF, для валюты USD и валюты CSA RUB.
- 2. Валютные свопы EURUSD и валютно-процентные свопы (Libor3M vs EURIBOR 3M) используются для получения дисконтных кривых для валюты EUR и валюты CSA USD, для валюты EUR и валюты CSA RUB, для валюты EUR и валюты CSA EUR.
- 3. Валютные свопы CHFUSD используются для получения дисконтных кривых для валюты CHF и валюты CSA USD, для валюты CHF и валюты CSA EUR, для валюты CHF и валюты CSA RUB, для валюты USD и валюты CSA CHF.

4.7. Кривые волатильности

В качестве кривых волатильности рассматриваются три кривые ATM Straddle, Risk Reversal, Butterfly, построенные с помощью котировок по соответствующим инструментам.

5. Расчет риск-параметров

5.1. Статические риск – параметры

При обозначениях ниже индекс і нумерует риск – факторные кривые і = RUONIA, Mosprime, Rusfar 3m, XCCY_adjusted, Rusfar, KeyRate, USD Libor, SOFR, EURIBOR, ESTR, SARON, EURUSD_XCCY, CHFUSD_FX, ATM Straddle , Risk Reversal, Butterfly, а индекс c – главные компоненты движения соответствующих кривых c = shift, twist, butterfly.

Риск-параметр	Обозначение
Множитель волатильности і – ой риск – факторной кривой	f_i
Параметры сценариев по компонентам $Shift_i$	Shif t_i^j

Параметры сценариев по компонентам $Twist_i$	Twist _i j
Параметры сценариев по компонентам $Butterfly_i$	Butterfly _i ^j
Волатильность ошибки shift – twist – butterfly	$\sigma_i^{ErrorSTB}$
Волатильность ошибки модели	$\sigma_i^{\mathit{ErrorModel}}$
Коэффициент ликвидности валютного курса FX_j	L_{FX_j}
Коэффициент ликвидности компоненты риск – факторной кривой	$L_{i,c}$
Горизонт оценки валютного риска для FX_j	$Time_{FX_j}$
Горизонт оценки риска волатильности	$Time_{FXVL}$
Горизонт оценки процентного риска	$Time_{IR}$
Коэффициент кредитного качества Участника	CreditQuality
Коэффициент, который связывает ставку валютного риска и дисконт	FXRiskToDiscount
Ставки переноса валютной позиции	R_{FX_i}
Коэффициент, определяющий соотношение размера ширины	k
Ценового коридора и размера гарантийного обеспечения	
Ставки валютного риска	FX _j Rate

5.2. Ставки валютного риска

Ставки FX_jRate определяются, исходя из значений соответствующих ставок обеспечения на Валютном рынке ПАО Московская Биржа, рассчитываемых согласно действующей Методике определения риск – параметров валютного рынка и рынка драгоценных металлов, опубликованной на сайте НКО НКЦ (АО).

5.3. Лимит колебаний стоимости Договора

Стоимость Договора удовлетворяет лимиту колебаний стоимости, если абсолютное значение расчетной стоимости такого Договора не превосходит произведения некоторого коэффициента и Гарантийного обеспечения, рассчитанного для такого Договора:

$$|NPV| \le k \cdot IM$$

где риск – параметр k устанавливается решением Клирингового Центра.

5.4. Параметры Договоров, заключаемых с Недобросовестным Участником

5.4.1. Параметры сделки типа своп

Штрафные ставки R_{FX_i} являются статическими риск – параметрами и устанавливаются независимо для каждой валюты, включая рубли. Штрафная ставка R_{FX_i} представляет собой процентную ставку, исходя из которой рассчитывается цена сделки валютный своп, принимаемая равной указанной ставке для любого валютного свопа с номиналом в валюте FX_i (вменённая ставка по сопряжённой валюте полагается равной нулю), заключаемой между Недобросовестным участником клиринга и Клиринговым центром при наличии задолженности и/или обязательств в валюте FX_i по сделкам, не обеспеченным соответствующими средствами под исполнение. Базовый курс свопа (курс первой ноги) устанавливается равным значению фиксинга Московской Биржи, установленного для соответствующей валютной пары и определенного по состоянию на 12:30 по московскому времени текущего Торгового дня в соответствии с Методикой расчета фиксингов Московской Биржи. Если день заключения сделки своп не является Торговым днем или если значение фиксинга не определяется, Базовый курс сделки своп устанавливается равным последнему установленному Клиринговым центром Центральному курсу соответствующей иностранной валюты.

6. Приложение

6.1. Коды Bloomberg котировок процентных деривативов, валютных опционов и фиксингов процентных ставок (список может быть дополнен по усмотрению НКЦ, при появлении соответствующих инструментов).

T	RUONIA		Mosprime	Mosprime		USDRUB Curve Libor		Libor			Euribor			ATM	RR	BF
Term	Fixing	OIS	Fixing	FRA	IRS	FX Swaps	XCCY	Fixing	FRA	IRS	Fixing	FRA	IRS	FX Option	FX Option	FX Option
SPT	RUONIA Index	-	-	-	-	RUBTN Curncy	-	-	-	-	-	-	-	USDRUBVON Curncy	USDRUB25RON Curncy	USDRUB25BON Curncy
1w	-	RRSO1Z Curncy	-	-	-	RUB1W Curncy	-	-	-	-	-	-	-	USDRUBV1W Curncy	USDRUB25R1W Curncy	USDRUB25B1W Curncy
2w	-	RRSO2Z Curncy	-	-	-	RUB2W Curncy	-	-	-	-	-	-	-	USDRUBV2W Curncy	USDRUB25R2W Curncy	USDRUB25B2W Curncy
3w	-	-	-	-	-	-	-	-	-	-	-	-	-	USDRUBV3W Curncy	USDRUB25R3W Curncy	USDRUB25B3W Curncy
1m	-	RRSOA Curncy	MOSKP1 Index	-	-	RUB1M Curncy	-	US0001M Index	-	-	EUR001M Index	-	-	USDRUBV1M Curncy	USDRUB25R1M Curncy	USDRUB25B1M Curncy
2m	-	RRSOB Curncy		-	-	RUB2M Curncy	-	-	-	=	-	-	-	USDRUBV2M Curncy	USDRUB25R2M Curncy	USDRUB25B2M Curncy
3m	-	RRSOC Curncy	MOSKP3 Index	RRFR0CF Curncy	-	RUB3M Curncy	-	US0003M Index	USFROCF Comdty	-	EUR003M Index	EUFROCF Comdty	-	USDRUBV3M Curncy	USDRUB25R3M Curncy	USDRUB25B3M Curncy
6m	-	RRSOF Curncy	MOSKP6 Index	RRFR0FI Curncy	-	RUB6M Curncy	-	US0006M Index	USFR0FI Comdty	-	EUR006M Index	EUFR0FI Comdty	-	USDRUBV6M Curncy	USDRUB25R6M Curncy	USDRUB25B6M Curncy
9m	-	RRSOI Curncy	-	-	-	RUB9M Curncy	-	-	-	-	-	-	-	-	-	-
1y	-	RRSO1 Curncy		-	RRSWM1 Curncy	-	RRUSSW1 Curncy	-	-	USSA1 Curncy	-	-	EUSW1V3 Curncy	USDRUBV1Y Curncy	USDRUB25R1Y Curncy	USDRUB25B1Y Curncy
2y	-	-	-	-	RRSWM2 Curncy	-	RRUSSW2 Curncy	-	-	USSA2 Curncy	-	-	EUSW2V3 Curncy	-	-	-
3у	-	-	-	-	RRSWM3 Curncy	-	RRUSSW3 Curncy	-	-	USSA3 Curncy	-	-	EUSW3V3 Curncy	-	-	-
4 y	-	-	-	-	RRSWM4 Curncy	-	RRUSSW4 Curncy	-	-	USSA4 Curncy	-	-	EUSW4V3 Curncy	-	-	-
5 y	-	-	-	-	RRSWM5 Curncy	-	RRUSSW5 Curncy	-	-	USSA5 Curncy	-	-	EUSW5V3 Curncy	-	-	-
6y	-	-	-	-	RRSWM6 Curncy	-	RRUSSW6 Curncy	-	-	USSA6 Curncy	-	-	EUSW6V3 Curncy	-	-	-
7 y	-	-	-	-	RRSWM7 Curncy	-	RRUSSW7 Curncy	-	-	USSA7 Curncy	-	-	EUSW7V3 Curncy	-	-	-
8y	-	-	-	-	RRSWM8 Curncy	-	RRUSSW8 Curncy	-	-	USSA8 Curncy	-	-	EUSW8V3 Curncy	-	-	-
9y	-	-	-	-	RRSWM9 Curncy	-	RRUSSW9 Curncy	-	-	USSA9 Curncy	-	-	EUSW9V3 Curncy	-	-	-
10y	-	-	-	-	RRSWM10 Curncy	-	RRUSSW10 Curncy	-	-	USSA10 Curncy	-	-	EUSW10V3 Curncy	-	-	-

Term	KeyRate	SOFR		ESTR		SARON		EURUSD XCCY	CHFUSD FX
Term	IRS	Fixing	OIS	Fixing	OIS	Fixing	ois		
SPT	-	SOFRRATE INDEX	-	ESTRON INDEX		SRFXON3 INDEX	-	-	-
1w	-	-	USOSFR1Z Curncy	-	EESWE1Z Curncy	-	SFSNT1Z Curncy	EUR1W Curncy	CHF1W Curncy
2w	-	-	USOSFR2Z Curncy	-	EESWE2Z Curncy	-	SFSNT2Z Curncy	EUR2W Curncy	CHF2W Curncy
1m	-	-	USOSFRA Curncy	-	EESWEA Curncy	-	SFSNTA Curncy	EUR1M Curncy	CHF1M Curncy
2m	-	-	USOSFRB Curncy	-	EESWEB Curncy	-	SFSNTB Curncy	EUR2M Curncy	CHF2M Curncy
3m	RUKRSC Curncy	-	USOSFRC Curncy	-	EESWEC Curncy	-	SFSNTC Curncy	EUR3M Curncy	CHF3M Curncy
4m	-	-	-	-	-	-	-	-	-
5m	-	-	-	-	-	-	-	-	-
6m	RUKRSF Curncy	-	USOSFRF Curncy	-	EESWEF Curncy	-	SFSNTF Curncy	EUR6M Curncy	CHF6M Curncy
9m	RUKRSI Curncy	-	USOSFRI Curncy	-	EESWEI Curncy	-	SFSNTI Curncy	EUR9M Curncy	CHF9M Curncy
1y	RUKRS1 Curncy	-	USOSFR1 Curncy	-	EESWE1 Curncy	-	SFSNT1 Curncy	EUBS1 Curncy	CHF12M Curncy
2y	RUKRS2 Curncy	-	USOSFR2 Curncy	-	EESWE2 Curncy	-	SFSNT2 Curncy	EUBS2 Curncy	CHF2Y Curncy
3y	RUKRS3 Curncy	-	USOSFR3 Curncy	-	EESWE3 Curncy	-	SFSNT3 Curncy	EUBS3 Curncy	CHF3Y Curncy
4 y	RUKRS4 Curncy	-	USOSFR4 Curncy	-	EESWE4 Curncy	-	SFSNT4 Curncy	EUBS4 Curncy	CHF4Y Curncy
5 y	RUKRS5 Curncy	-	USOSFR5 Curncy	-	EESWE5 Curncy	-	SFSNT5 Curncy	EUBS5 Curncy	CHF5Y Curncy
6y	RUKRS6 Curncy	-	USOSFR6 Curncy	-	EESWE6 Curncy	-	SFSNT6 Curncy	EUBS6 Curncy	CHF6Y Curncy
7 y	RUKRS7 Curncy	-	USOSFR7 Curncy	-	EESWE7 Curncy	-	SFSNT7 Curncy	EUBS7 Curncy	CHF7Y Curncy
8y	RUKRS8 Curncy	-	USOSFR8 Curncy	-	EESWE8 Curncy	-	SFSNT8 Curncy	EUBS8 Curncy	CHF8Y Curncy
9y	RUKRS9 Curncy	-	USOSFR9 Curncy	-	EESWE9 Curncy	-	SFSNT9 Curncy	EUBS9 Curncy	CHF9Y Curncy
10y	RUKRS10 Curncy	-	USOSFR10 Curncy	-	EESWE10 Curncy	-	SFSNT10 Curncy	EUBS10 Curncy	CHF10Y Curncy

6.2. Ставки, используемые для начисления процентов на накопленную депозитную маржу

CSA	IRs
RUB	RUONIA
USD	SOFR (SOFRRATE Index)
EUR	ESTR (ESTRON Index)
CHF	SARON (SRFXON3 Index)

6.3. Разложение по компонентам Гарантийного обеспечения

		Рыночны	Рыночные риск-факторы												
		IR	IR												
		RUONIA	Mosprime	Rusfar 3m	XCCY adjusted	Rusfar	KeyRate	USD Libor	SOFR	SARON	Euribor	ESTR	EURUSD XCCY	CHFUSD FX	
	Shift														
	Twist														
	Butterfly														
Рыночны й риск	Ошибка STB модели														
	Ошибка модели риск- факторных кривых														
Риск ликвидности					_										
Итого															

Компоненть	ī		USDRUBVo	1	FX валют			
Rominicia	•	ATM	RR	BF	USD	EUR	CHF	Итого
	Shift							
	Twist				-	-	-	
	Butterfly				-	-	-	
Рыночный риск	Ошибка STB модели				-	-	-	
	Ошибка модели риск- факторных кривых				-	-	-	
Риск ликвидности								
Итого								

Прошито, пронумеровано и скреплено печатью 27 («Казусть семь) листа (-ов)